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Abstract—We introduce self-adjusting partially ordered lists,
a generalization of self-adjusting lists where additionally there
may be constraints for the relative order of some nodes in the
list. The lists self-adjust to improve performance while serving
input sequences exhibiting favorable properties, such as locality
of reference, but the constraints must be respected.

We design a deterministic adjusting algorithm that operates
without any assumptions about the input distribution and with-
out maintaining frequency statistics or timestamps. Despite the
more general model, we show that our deterministic algorithm
performs closely to optimum (it is 4-competitive). In addition,
we design a family of randomized algorithms with improved
competitive ratios, handling also a more general rearrangement
cost model, scaled by an arbitrary constant d > 1. Moreover, we
observe that different constraints influence the competitiveness
of online algorithms, and we shed light on this aspect with a
lower bound.

We investigate the applicability of our self-adjusting lists in the
context of network packet classification. Our evaluations show
that our classifier performs similarly to a static list for low-
locality traffic, but significantly outperforms Efficuts (by factor
7x), CutSplit (3.6x) and the static list (14x) for high locality and
small rulesets.

I. INTRODUCTION

Self-adjusting data structures adapt their internal structure to
the input sequence with the aim to reduce the request process-
ing time. Self-adjusting data structures feature a reorganization
algorithm that runs after each operation and adapts to any
input without knowing it a priori. In comparison to static
data structures, their self-adjusting counterparts experience
overhead, which however is often eclipsed by the gains from
adaptation to input. Popular data structures of this kind are
self-adjusting lists [30] and splay trees [31].

Self-adjusting lists are traditionally analyzed in the context
of online algorithms, where the problem is referred to as
online list access problem [7, Ch. 1 and 2], one of the
most fundamental problems in online algorithms. The problem
was studied for decades [21, 27, 30, 34, 26, 2] and remains
an active field of research [3]. Over years, the community
studied the problem under various cost models [23, 18] and
generalizations [24, 13]. In a nutshell, in the classic list access
problem (without the partial order), we manage a linked list
data structure in which accessing a node costs proportionally
to its distance from the head of the list. An online algorithm
may rearrange the list to decrease the access cost, but a rear-
rangement has its own cost for node transpositions. The goal
of an online algorithm is to minimize the total cost of access
and rearrangements.

This paper initiates the study of a natural generalization of
self-adjusting lists, where additionally we are given a partial
order among the nodes of the list. Each relation (u,v) in the
partial order yields a constraint: u must appear before v in
any configuration of the list. See Figure 1 for an example of
a configuration of the list complying with a partial order.

To illustrate where such data structure could be useful,
consider an information retrieval problem where we search
a set of documents to find a piece of information. However,
certain documents may be overridden by a new, related docu-
ment, so to always find up-to-date information, the documents
must always be accessed in a chronological order. A self-
adjusting list respecting the chronological order is a suitable
data structure for this application, and it can reduce the time
for accessing popular documents, while always returning their
newest version.
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Fig. 1: An example of a list configuration with a partial order among the nodes.
The requested node, depicted as a square, cannot move forward beyond the
solid node due to a precedence constraint (highlighted with a bold arrow). If
we choose to move the requested node close to the head of the list, we must
first move the solid node, which however has its own constraints we must
account for.
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Another practical motivation arises in the context of network
packet classification [16], where self-adjustments enable adap-
tation to traffic but rule priorities and overlaps introduce prece-
dence constraints (we elaborate later in this section). More
broadly, the problem models flexible processing pipelines in
decision systems, where constraints realize part of the logic,
and assembly lines where some stages must be finished before
others.

The consideration of constraints poses algorithm design
challenges not present in classic self-adjusting lists. For exam-
ple, how to design an efficient procedure that moves the re-
quested node closer to the front of the list? What if the node is
blocked, as in Figure 1 — should we move the blocking node
as well, and to what extent? Well-known online algorithms
for the list access problem, such as Move-to-Front [30] and
TIMESTAMP [2] can flexibly move nodes towards the head
of the list upon access. In contrast, constraints may prevent
such optimizations or at least make them costly.



This generalization of online list access raises fundamental
questions about its competitiveness:

o Does the introduction of constraints actually make the
problem harder or easier from the standpoint of competi-
tive analysis? Which algorithmic techniques from classic
list access can we use, and which become obsolete? Do
classic lower bounds hold even with constraints?

o How does the structure of the partial order influence the
competitive ratio? For example, if no nodes can move,
the competitive ratio is 1. If the partial order consists
of two disjoint chains of length n/2, then a simple
static strategy that interleaves two chains is 2-competitive,
and no deterministic algorithm can be better than 1.5-
competitive. With no dependencies, we can directly carry
lower bounds [3, 26] from classic list access in the
P? model. For example, if the directed acyclic graph
describing the precedence constraints has depth A, then
it is easy to see that a strategy that always moves the
blocking nodes forward is at best 2(A)-competitive.

In this work, we are interested in competitive analysis [7] of
deterministic and randomized algorithms for online partially
ordered list access. We design deterministic and randomized
online algorithms, built around a simple recursive procedure
that efficiently moves a carefully chosen set of nodes forward.
Furthermore, we study how various partial orders influence the
competitiveness of deterministic algorithms.

A. Practical Motivation: Self-Adjusting Packet Classification

Packet classification: In communication networks, packet
classification [16] is one of the operations executed for each
packet, at every node of the network: at switches, routers,
middleboxes (e.g., firewalls), and end hosts. In a nutshell,
packet classification assigns a label to each packet, determin-
ing, e.g., whether the sender of the packet can access the
intended destination, or via which interface the packet should
be forwarded to reach its destination. Consequently, it enables
fundamental network functions such as access control, packet
forwarding, quality of service, accounting and more. Packets
are classified according to a set of packet classification rules
(see Figure 2 for an example), and each rule consists of a
rule priority, a filter expression on packet header fields, and
an action that assigns a label. Classifying a packet in this
setting requires finding the highest priority rule that matches
the packet and applying the label determined by this rule.

Packet classifiers that adapt to traffic: Existing packet
classifiers typically have internal non-adaptive data structures
designed for good performance under uniform traffic pat-
terns (e.g., lists, tries, hash tables, bit vectors, or decision
trees [16, 32, 11], as well as TCAM hardware solutions).
We present initial experimental results in § VI suggesting
that the performance of packet classification (e.g., reaction
time and throughput) can be greatly improved by an adaptive
solution, especially on non-uniform workloads, i.e., when the
majority of traffic can be served with just a few rules [28].

Our approach to self-adjusting packet classifiers builds upon
the concept of self-adjusting data structures. Intuitively self-

adjusting data structures provide the desired adaptability to
workloads, and allow exploiting “locality of reference”, i.e.,
the tendency to repeatedly access the same set of items
over short periods of time. Such data structures have been
studied intensively for several decades already, including self-
adjusting linear lists, which were one of the first data structures
of this kind [30].

Packet classifiers, however, additionally introduce novel
requirements that do not exist in data structures. To correctly
classify a packet according to a certain rule, we must not only
check if it is a match, but also if it is the best match, by
excluding matches to higher priority rules first. This check is
unnecessary if the higher priority rule is independent: if the
matching domains of the rules do not overlap, examining the
rules in any order determines the action uniquely. We refer
to this challenge as inter-rule dependencies, and we note that
usually, we have few of them [19].

Packet classification with self-adjusting partially ordered
lists: 'We propose a self-adjusting list packet classifier, where
we organize the classification rules in a linked list. To classify
an incoming packet, we traverse the list of rules, searching
for the first rule that the packet matches with (with this
perspective, classifying a packet can be seen as the access
operation for a node in a list). Overlaps between the rules
together with rule priorities introduce precedence constraints
among the rules, see Figure 2 for an example. The rule that
matched the packet is then moved closer to the head of the
list to speed up future matches, but dependencies need to be
respected. Due to its simplicity, our algorithm can be a drop-in
replacement for static list packet classifiers.

B. Contributions

The main technical contribution of this paper is the design of
constant-competitive deterministic and randomized algorithms
for online partially ordered list access. The deterministic
algorithm is simple, memoryless, and 4-competitive in d = 1
case (the case fitting the application of packet classification).
The randomized algorithms successfully generalize a family
of Markov algorithms from classic list access [14] (includ-
ing Move-To-Front, BIT, COUNTER, RANDOM-RESET [30,
26]) without degrading the competitiveness. The randomized
algorithms handle arbitrary d > 1, and for d = 1 we have a
2.64-competitive algorithm.

We shed light on how different partial orders influence
competitiveness. By generalizing the argument of Reingold et
al. [26], we show that the lower bound of 3 against determinis-
tic algorithms applies to the setting with partial orders, even for
pairwise independent nodes which have multiple dependencies
themselves.

We identify applications of self-adjusting partially ordered
lists in the context of network packet classification [16]. Our
algorithms interpreted in this context give rise to self-adjusting
packet classifiers, which adapt to the traffic they serve.

II. MODEL

We introduce the online partially ordered list access prob-
lem. In this problem, our task is to manage a self-adjusting



N Proto SrclIP Dst IP Src Port Dst Port Action

1 TCP 10.12.12.0/24 20.0.0.1/32 ANY 80 DENY

2 TCP 0.0.0.0/0 20.0.0.1/32  ANY 80 ACCEPT

3 1P 0.0.0.0/0 20.0.0.1/32 DENY

4 UDP 0.0.0.0/0 0.0.0.0/0 1000-2000  1000-2000 ACCEPT

5 UDP 20.0.0.0/24 10.0.10.0/24 ANY 3306 ACCEPT

6 TCP 10.12.12.0/24  0.0.0.0/0 21 21 DENY

7 IP 10.0.0.0/16  20.0.0.0/20 ACCEPT
dependencies 8§ 1IP 0.0.0.0/0 0.0.0.0/0 DENY

Fig. 2: An example of a table of packet classification rules (right) and the corresponding partial order (left). In the table fields, IV is the rule number and
priority, fields Proto, Src IP, Dst IP, Src Port, and Dst Port are packet header fields, and Action determines the packet label to apply if the rule matches. A
feasible method to classify a packet is to match it against the rules, starting from the top, and to apply the label of the first matching rule. This method is
flexible: some rules can be reordered, and matching the packet to them one-by-one in the new order still applies the same labels to packets. The partial order
hints if rearranging the rules results is correct. For example, rule 6 may move in front of rule 5, and each packet would be classified correctly, but moving

rule 8 to the front of the list would result in dropping all packets.

linked list serving a sequence of requests, with minimal
access and rearrangement costs and accounting for precedence
constraints induced by a given partial order. If the partial
order is empty, the problem is equivalent to classic online
list access [30].

The list and the requests: Consider a set of m nodes
arranged in a linked list. Over time, we receive a sequence
o of access requests to nodes of the list. Upon receiving a
request to a node in the list, an algorithm searches linearly
through the list, starting from the head of the list. Accessing
the node at position ¢ in the list costs ¢ (the 1st node is at
position 1).

The partial order: In the beginning, the algorithm is
given a partial order P, which remains unchanged throughout
the execution of the algorithm. The partial order induces
precedence constraints among the nodes of the list. We say
that a node v is dependent on a node u if there exists a relation
(u,v) in the partial order P, and then, v must be in front of
u in every feasible configuration of the list. We assume that
the given initial configuration of the nodes obeys the partial
order.

Node rearrangement: After serving a request, an algo-
rithm may choose to rearrange the nodes of the list. Precisely,
the algorithm may perform any number of feasible transpo-
sitions of neighboring nodes, i.e., transpositions that respect
the precedence constraints induced by the partial order. Each
transposition incurs the cost 1.

The goal of the online algorithm is to minimize the total
cost of accesses and node rearrangements. In this paper, we are
interested in competitive online algorithms for this problem.

III. A DETERMINISTIC ALGORITHM

We propose a simple deterministic algorithm for online
partially ordered list access. We argue that the algorithm
is 4-competitive in the P! model (the general P? model
is considered in § IV). The algorithm can be viewed as
a generalization of Move-To-Front [30] to partially ordered
lists. If the partial order is empty, the algorithm is equivalent
to Move-To-Front. Similarly to Move-To-Front, our algorithm
satisfies the definition of a memoryless online algorithm [9].

The algorithm is designed around a recursive procedure that
we run for the requested node. In a nutshell, we move the node

forward until we encounter a node that is blocking the moving
node, or the head of the list. If we encounter the blocking node,
we recursively start moving the blocking node instead.

To define MRF, we introduce the concept of a blocking
ancestor. An ancestor relation in a partial order is an extension
of the parent-child relation to indirect relations, known as the
transitive closure [10]. For each node with a non-empty set of
ancestors in the partial order P, we distinguish a node that is
first to block the node’s movement forward in the list: a node y
is the blocking ancestor of a node z if z is dependent on y,
and among all nodes z depends on, y is the furthest from the
head.

We present the pseudocode of MRF in Algorithm 1. By
pos(z) we denote the position of node z in the list maintained
by the algorithm, counting from the head of the list (recall that
the position of the first node is 1). When the algorithm moves
the node to a certain position, it performs a sequence of swaps
until the desired position is reached. In Figure 3, we depict an
example run of MRF after serving a request.

Algorithm 1: The algorithm MOVE-RECURSIVELY-
FORWARD for a partial order P.

Input: An access request to node o

1 Access oy
2 Run the procedure MRF(o+)

3 procedure MRF(y):

4 if y has no ancestors in P then

5 | Move y to the front of the list

6 else

7 Let z be the blocking ancestor of y in P
8 Move node y to pos(z) + 1

9 Run the procedure MRF(z)

10 end

A. The Blocking Chain

Next, we collectively reason about all the nodes that move
after serving a request, referred to as the blocking chain of the
requested node. The blocking chain is the central concept in
the analysis of all algorithms in this paper.

Fix the configuration of MRF right before serving the
request to a node o;. The blocking chain is the sequence of



nodes constructed by iteratively collecting the set of blocking
ancestors of oy, constructed as follows. Initially, the chain
contains oy, and in a single step, we determine the blocking
ancestor of the head of the chain, and we insert the blocking
ancestor to the front of the chain; we repeat until the head
of the chain has no ancestors. We denote the blocking chain
by b, its length by B, and we emphasize that b contains the
requested node at the last position, o = bp (see Figure 3).
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Fig. 3: An example of handling a request by the algorithm MRF. The
blocking chain is denoted by nodes b;, with the dependencies between them
distinguished by bold arrows. Each node of the blocking chain moves right
behind its blocking ancestor and this movement is depicted with a blue arrow
under the list. Furthermore, we illustrate sets of nodes S; that we use in the
analysis.

MOVE-RECURSIVELY-FORWARD strikes a balance between
the access and rearrangement costs: the algorithm exchanges
no more pairs than the position of the accessed node
(Lemma 1). We claim that the reconfiguration cost of MRF is
linear in terms of the access cost, and multiple recursive calls
decrease the cost. Intuitively, each node from the blocking
chain moves through a disjoint part of the list, in total at most
pos(y). For a graphical argument, we refer to Figure 3.

Lemma 1. Consider a single request to a node y at posi-
tion pos(y) handled by the algorithm MOVE-RECURSIVELY-
FORWARD. Then, the number of transpositions after serving the
request is pos(y) — B, where B is the length of the blocking
chain of y.

Proof. Let b; for 1 < ¢ < B be the blocking chain of the
node y. Each node b; moves to a position one place behind
its blocking ancestor b;_1, except the node by, which moves
to the front of the list. The total number of transpositions is

B

> "(pos(b;)—(pos(b;_1)+1))+(pos(b;)—1) = pos(bs)—B.
i=2
As y = bp, we conclude that the lemma holds. O

B. Inversions and the Potential Function

Given a partial order, and two list configurations respecting
the partial order, is it always possible to reach one from the
other, and if so, at what cost? To answer this question, we
revisit the concept of inversions, used in the analysis of Move-
To-Front [30] to study their interaction with partial orders.

An inversion between two lists L; and Lo is an ordered
pair of nodes (u,v) such that u is located before v in Lq, and
u is located after v in Ly. We claim that the distance (in the
number of order-respecting transpositions) between partially

ordered lists is equivalent to the number of inversions between
them:

Lemma 2. Consider two lists L1, Lo consisting of the same
set of nodes and obeying a partial order P. Then, the minimum
number of transpositions respecting ‘P required to transform L
to Lo is equal to the number of inversions between Ly and Lo.

Proof. First, we show that transforming L, to Lo is always
possible without violating the partial order P at any transient
configuration, and the number of transpositions required is at
most the number of inversions.

Consider the following recursive strategy of transforming
Lq into L. Let v be the node at the front of Ls. Being the
first node in Lo, the node v is not dependent on any other
node from Ls. Since Ly and L, share the same partial order
P, the node v can move to the front of L; as well, without
violating any precedence constraints. For each node w« in front
of v in Ly, we have an inversion (u,v), and moving v to the
front incurs the cost equal to the number of (u,v) inversions.
Then, we remove v from both lists and recursively apply this
procedure until the lists are empty. The minimum number of
transpositions to transform L; to Lo is no smaller than with
the described procedure.

Second, the minimum number of transpositions is at least
the number of inversions, since a single transposition can
decrease the number of inversions by at most one. We showed
inequalities both ways, and hence we conclude that the claim
holds. O

Potential function: Next, we define the potential function
used throughout the analysis of MRF. Fix any optimal offline
algorithm OPT. Let ® be a function from a tuple of MRF’
and OPT’s lists to non-negative integers:

d=2-1,

where I is the number of inversions between MRF’s list and
OPT’s list. Let ®(t) denote the value of ® right after serving

t-th request. For succinctness, in the remainder of this paper
we use the notion of inversions in this narrower meaning, for
comparing the lists of MRF and OPT.

Lemma 2 supports our potential function choice. The po-
tential function characterizes the distance between the online
algorithm’s list and a fixed optimal offline algorithm’s list in
terms of the number of order-respecting transpositions.

C. How Do Rearrangements Affect Inversions?

In the analysis of Move-To-Front [30], Sleator and Tarjan
studied the influence of moving the requested node to the
front of the list on inversions between Move-To-Front’s list
and OPT’s list. To this end, they defined the values k£ and /
related to the number of nodes in front of the requested node o
in online algorithm’s and OPT’s list. We refer to these values
in our analysis: precisely, let k£ be the number of nodes before
o in both MRF’s and OPT’s lists, and let ¢ be the number
of nodes before o, in MRF’s list, but after o; in OPT’s list.
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Fig. 4: This example illustrates central definitions of sets of nodes used in
our analysis. We depict the positions of nodes in both MRF’s and OPT’s list
(joined by solid blue lines). The dotted black lines between the nodes b; help
in determining the assignment of nodes to sets: in K; we have the nodes in
front of the dotted black line between b;, and in L; we have the nodes that
cross the dotted black lines between b;’s.

In Move-To-Front, the change in inversions after serving the
request is k — ¢. The design goal of MOVE-RECURSIVELY-
FORWARD is to arrive at the same conclusions for the change
in inversions, see Theorem 3. Our argument requires careful
analysis of the rearranged nodes, as many of them move after
serving the request.

With the values k£ and ¢, it is possible to analyze the
classic algorithm Move-To-Front, but they are not sufficient to
express the complexity of MOVE-RECURSIVELY-FORWARD.
For the purpose of a fine-grained analysis of our rearrangement
operation, we introduce the generalizations of the values of &
and { to sets K; and L, defined for each node of the blocking
chain.

Sets K; and L;: Precisely, let K; be the set of elements
before b; in both MRF’s and OPT’s lists for j € [1, B], and
let L; be the set of elements before b; in MRF’s list but after
b; in OPT’s list. We note that these sets are generalizations
of k and ¢: for the requested node b we have k = |K | and
¢=|Lg]|.

Sets S;: The sets of nodes between the nodes b in MRF’s
list are crucial to the analysis. Intuitively, the node b; moves in
front of all the nodes from the set .S;. Let .S; be the elements
between the head of MRF’s list and by (included). For 5 €
[2, B], let S; be the set of nodes between b; and b;_; (with
b;_1 excluded) in MRF’s list.

Figure 4 illustrates an example of possible composition of
sets K;, L; and S; for different values of j on a given request.

Consider a single request and the sequence of rearrange-
ments of MOVE-RECURSIVELY-FORWARD that follows it. We
study the influence of the rearrangements on the change in
the potential function. To this end, we separately bound the
number of introduced and destroyed inversions. The Figure 4
assists in illustrating the graphical arguments used in this
section.

Theorem 3. Consider a request to the node oy with a blocking
chain of length B, and fix a configuration of OPT at time t.
Then, the change in the number of inversions after serving the
request by MRF is at mostk — ¢ — B + 1.

To prove this claim, we consider the influence of the Move-

Recursively-Forward operation on values k and ¢ (defined for
the currently requested node) by inspecting the sets K; and L;
(defined for the nodes b;). We separately bound the number
of inversions created (Lemma 6) and destroyed (Lemma 7).
Before showing these claims, we inspect the basic relations
between the sets K;, L; and S; (Lemmas 4 and 5).

Lemma 4. Consider a request to a node and its blocking chain
of length B. Then, the following relations hold:

D UL K; = Kg,
B B
2) U= (S0 Ly) = U=y Ly

Proof. First, we prove the equality 1. We show inclusions both
ways. Note that the order between nodes from b is the same
in both MRF’s and OPT’s lists. Hence, a node y € K; is in
front of b; and in front of all b; for 4 < j in both MRF’s and
OPT’s list. Consequently, each node from K; belongs to all
K for i < j, and we have Ule K; C Kg.

Conversely, Kg C Ule K by basic properties of sets, and

we conclude that the sets are equal, and the equality holds.

Next, we prove the equality 2. We show inclusion both

ways. Consider any element y € L;. The sets {.S;} partition
the nodes placed closer to the front of the list than o, (the
requested node), thus y belongs to some .5; for ¢ < j. Fix
such i; we claim that additionally y € L;:

« y belongs to S;, and hence it is in front of b; in MRF’s
list,

e y is after b; in OPT’s list (it belongs to L;), and hence
it is after b; in OPT’s list (the order of b is fixed due to
precedence constraints).

Hence, any y € L; belongs to S; N L; for some ¢, and we
conclude that the inclusion Ule L;C Ule(Sj N L;) holds.
Conversely, by properties of sets Ule(Sj NL;)C Ule L;,
and we conclude that the sets are equal and the equality holds.

O

Lemma 5. Consider a request to a node and its blocking chain
of length B. Then, the following relations hold:

DY KNS <k-B+1,
2) YN S| >

Proof. First, we prove the equality 1. The nodes of the
blocking chain by, ...,bp_; belong to K g but not to S; N K;
for any j € [1,..., B], thus

B B
JSinKy < [|JKj|-B+1=k-B+1,

j=1 j=1

where the equality follows by Lemma 4, equation 1 and the

definition of k. Second, we prove the equality 2. We have the
following chain of inequalities

B B

B
SIsinL=[Js Nl =1 Lil > 1Ls| = ¢,

j=1 j=1 j=1

where the first step holds as the sets S; are disjoint, the second
step follows by Lemma 4, equation 2, the inequality follows



by basic properties of sets, and the last step follows by the
definition of /. O

Lemma 6. Consider a request to a node o, with a blocking
chain of length B, and fix a configuration of OPT at time t.
Then, due to the rearrangements after serving the request, MRF
creates at most k — B + 1 inversions.

Proof. Let 1 J+ be the number of inversions added by moving
a single node b; by MRF, for j € [1,B]. To bound I},
we inspect the set S; of the nodes that b; overtakes, and
we reason based on their positions in OPT’s list. Moving b;
forward creates inversions with nodes in (possibly a subset
of) S; N K;. No other node changes its relation to the set .S},
hence the inversions for nodes in S; are influenced only by
the movement of b;. This gives us the bound I7+ <|S;NK;|.

We sum up the individual bounds on I;r for all 5 to bound
the total number of inversions created

B B B

Yoo <> ISinK =[S nK)l=k-B+1,

j=1 j=1 j=1
where the first equality holds as the sets .S; are disjoint, and
the last step follows by Lemma 5, equation 1. O

Lemma 7. Consider a request to the node o, and fix a config-
uration of OPT at time t. Due to rearrangements after serving
the request, MRF destroys at least ¢ inversions.

Proof. Let I; be the number of inversions destroyed by
moving a single node b; by MRF, for j € [1, B]. To bound
I j_, we inspect the set S; of the nodes that b; overtakes, and
we reason based on their positions in OPT’s list. Moving b;
forward destroys all inversions with nodes in S;NL;. No other
node changes its relation to the set .S;, hence the inversions
for nodes in S; are influenced only by the movement of b;.
This gives us the bound I; > [S; N L;|.

We sum up the individual bounds on ;" for all j to bound
the total number of inversions destroyed.

B B B
Y 1= 1sin Ll =10 Ly)l,
j=1 j=1 j=1

where the equality holds as the sets .S; are disjoint, and the
last step follows by Lemma 5, equation 2. O

Combining Lemmas 6 and 7 gives us the joint bound on the
change in the number of inversions and proves the Theorem 3.
We note that this bound is consistent with the bound on the
changes in inversions for the algorithm Move-To-Front [30],
where the inversions were considered with respect to the
requested node only.

D. Bounding the Competitive Ratio

The observations from previous subsections enable us to
directly repeat the potential function argument of Sleator and
Tarjan for Move-To-Front [30].

Theorem 8. The algorithm MRF is strictly 4-competitive in
the P! model.

The proof repeats the arguments of Sleator and Tarjan for
Move-To-Front, and internally we use a generalized argument
concerning inversions (Theorem 3), which handles the gener-
alized recursive rearrangement procedure.

Proof. We fix an optimal offline algorithm OPT and its run
on a given input o, and we relate OPT’s run with the online
algorithm’s run.

We compare the costs of MRF and an optimal offline algo-
rithm OPT on o using the potential function ® (cf. § III-B),
distinguishing between two types of events. To analyze the
competitiveness on o, we sum an amortized cost of a sequence
of events of type:

(A) An access event Ri(o;) for i € {0,1}. The algorithm
serves the request to the node o, and runs the Move-
Recursively-Forward procedure. We assume a fixed con-
figuration of OPT throughout this event.

(B) A paid exchange event of OPT, P(o;), a single paid
transposition performed by OPT, where it either creates
or destroys a single inversion with respect to the node o.
We assume a fixed configuration of MRF throughout this
event.

Let Cmgrr(t) and Copr(t) denote the cost incurred at time
t by MRF and OPT, respectively. First, we bound the cost of
MREF incurred while serving a request to a node o, at time
t (an access event). This cost consists of the access cost and
the rearrangement cost. To access the node oy, the algorithm
incurs the cost pos(o;), and by Lemma 1 the rearrangement
cost is bounded by pos(o:), hence Cyrp(t) < 2 - pos(oy).

Next, we bound the amortized cost for every request served
by MRF. The amortized cost is Cyrp(t) + A®(¢) for each
time t. By Theorem 3, we bound the change in the number
of inversions due to MRF’s rearrangement after serving the
request at time ¢t by Al <k —/¢— B+ 1<k — £. Thus, the
change in the potential is A®(t) < 2(k — £). As pos(o;) =
k + ¢+ 1, combining these bounds gives us

CMRF(t) + A(b(t) <2. pOS(O’t) +2 (k‘ — f) <4- COPT(t)a

where the last inequality follows by Copr > k + 1.

Note that the bound on amortized cost accounts for possible
paid exchange events, the rearrangement of OPT at time {.
Each transposition of OPT increases the number of inversions
by at most 1, which increases the LHS by at most 2; and for
each transposition OPT pays 1, which increases the RHS by
4.

Finally, we sum up the amortized bounds for all requests of
the sequence o of length m, obtaining:

CMRF(U) + (I)(m) - (I)(O) S 4. COPT(U)'

We assume that MRF and OPT started with the same list,
thus the initial potential ®(0) = 0, and the potential is always
non-negative, thus in particular ®(m) > 0, and we conclude
that CMRF(O') <4-Copr (O’) L]

We note that the deterministic algorithm was analyzed
in the P' model, where each transposition costs 1. In the



next section, we consider randomized algorithms, where we
account for arbitrary d.

IV. RANDOMIZED ALGORITHMS

We sketch a family of constant-competitive online algo-
rithms that generalize Markov algorithms from classic list ac-
cess [14] to the partially ordered list access (including Move-
To-Front, BIT, COUNTER, RANDOM-RESET [30, 26]). Al-
though the best algorithm from this family is RANDOM-
RESET, we generalize a broader family of Markov algorithms.
The competitive ratios of our algorithms generalized to partial
orders remain equal to Markov algorithms from classic list
access, and an enabler for this result is the concept of hidden
inversions, overviewed in the next subsection. In contrast to
the deterministic algorithm from § III that treated about d = 1,
now we handle arbitrary exchange cost d > 1.

The generalized algorithms mix the concepts from
Markov algorithms and deterministic MOVE-RECURSIVELY-
FORWARD algorithm. Each node maintains a state, represented
as a Markov chain; the node moves only if the Markov chain
reaches a distinguished state. To guarantee independence of
states of the nodes, we advance states of all nodes in the list,
but we may move only the nodes included in the blocking
chain (defined in § III) of the requested node. Our randomized
algorithms employ a randomized version of the recursive
procedure handling the blocking chain, where the movement of
each node in the chain is independent of other nodes. MMRF
is a family of randomized algorithms, with each algorithm
characterized by an irreducible Markov chain maintained for
every node in the list.

Algorithm 2: The algorithm Markov-Move-
Recursively-Forward for a partial order P.

Initialization : The Markov chain for each node in N is
initialized according to the stationary
distribution 7.

Input: An access request to node o

1 Access oy

2 for each node x in the list do

3 \ Advance the Markov chain of =
4 end
5 Run the procedure MMRF(o;)

procedure MMRF(y):

6
7 if y has no ancestors in P then

8 if STATE(y) is O then

9 | Move y to the front of the list

10 end

11 else

12 Let z be the blocking ancestor of y in P
13 if STATE(y) is O then

14 | Move node y to pos(z) + 1

15 end

16 Run the procedure MMRF(2)

17 end

Theorem 9.Let M be an irreducible Markov chain. The
MMREF algorithm that operates on M has a competitive ratio

that is upper bounded by max{1+mo-(2d+T),1+ %} against
the oblivious adversary, where T' denotes the expected hitting
time to state 0, given by T = S5_ m; - h;.

We defer the proof to the full version of the paper. The
Theorem 9 matches the best known competitive bounds for
self-adjusting lists without dependencies [26, 14].

V. A LOWER BOUND

The competitiveness of the problem varies with the given
partial order. We examine this trend in the deterministic
setting. The trivial case, where the partial order is complete,
no nodes can move, for both the online algorithm and the
offline algorithm, results in the competitive ratio of 1. This
stands in contrast to the setting inherited from classic list
access (equivalent to the empty partial order case) and we
have a lower bound that approaches 3 as the number of nodes
grow [26].

Besides the above corner cases, the scenarios with the
competitiveness in-between exist. Consider a partial order that
consists of two disjoint chains of length n/2 each. Then a
static strategy that interleaves the nodes of the chains and does
not move them further is 2-competitive. For this partial order,
a lower bound of 1.5 exists, as a consequence of the mentioned
lower bound [26], applied to the two independent nodes (heads
of the chain).

A question arises, does adding constraints always lead to
lower competitive ratios? It is easy to see that for partial orders
that contain enough nodes with no constraints whatsoever: the
lower bound still approaches 3 as the number of such nodes
grows. However, such a case can be viewed as degenerated,
hence we look into the competitiveness of a less-trivial setting,
where pairwise independent nodes are dependent on other
nodes. In the following, we demonstrate that if a certain
substructure appears in the partial order, the lower bound
approaches 3.

Theorem 10. Consider a partial order P with subsets of nodes
@ and R such that (1) nodes of () are pairwise independent,
and (2) the set of ancestors of each node of () is R. Then, if a
deterministic online algorithm ALG is c-competitive for online
list access with the partial order P, then ¢ > 3 — q%ﬁr? for
q=1Q|,r=|R|andr > 0,q > 0.

We defer the proof to the full version of the paper.

This lower bound generalizes the lower bound of 3—6/(n+
2) given by Reingold et al. [26], where n is the length of the
list. For 7 = 0 and ¢ = n the lower bounds match.

VI. EMPIRICAL EVALUATION OF SELF-ADJUSTING
PACKET CLASSIFIER

We now empirically evaluate the benefits and limitations of
our deterministic algorithm from § III in the practical use-case
of self-adjusting packet classifier (see § I-A). Similar evalua-
tions for classic list access algorithms, also concerning locality
were performed by Bachrach et al. [5]. In our evaluations,
the traffic locality refers to the skewness of the distribution
of the rules (nodes of the list) hit with the packet match.



Our evaluation compares with packet classifiers beyond lists:
we compare our algorithm MOVE-RECURSIVELY-FORWARD
(MRF) to existing packet classifiers, including hierarchical cut
classifiers [35, 29, 15]. We investigate the following question:

Do self-adjustments improve the classification time?

We show that compared to a static list, the self-adjusting
list (MRF) improves the classification time by at least 2x on
average and at least 10x better under high locality in traffic.
Compared to hierarchical cut classifiers, under high locality
and for small ruleset' sizes, MRF improves classification
time. Specifically, our results show that MRF’s classification
time is 7.01x better than Efficuts [35] and 3.64x better than
CutSplit [20] for small ruleset sizes and high traffic locality.

The Figure 7a show the key findings of our evaluation,
presenting the average nodes traversed (representing classi-
fication time) normalized to CutSplit [20]. We observe that
MREF significantly improves the classification time compared
to CutSplit in the region of smaller rulesets and high traffic
locality. However, MRF’s classification time degrades below
the competition outside these regions.

A. Methodology

Rulesets and Packet traces: We use Classbench [33] to
generate rulesets and traffic resembling real-world scenarios.
We examine a wide range of rulesets sizes and traffic locality.
To control traffic locality, we use Classbench’s parameter Pb:
the Pareto distribution scale parameter [17].

Comparison with existing packet classifiers: We compare
MRF with list-based and decision tree-based packet classifiers.
In our evaluations, a static-list serves as a baseline for a
list-based approach. Among wide range of decision tree-
based packet classifiers, our baselines include Hicuts [15],
Hypercuts [29], Efficuts [35] and the more recent packet
classifier CutSplit [20] which combines cutting and splitting
techniques. We use the default parameter settings for all our
baselines.

Simulations: We built a custom simulator written in
C++ and implemented all the baselines, including MRF. We
have faithfully merged the online available source code of
our baselines into our simulator for a common ground of
comparison. We additionally implemented the packet lookup
function for Hicuts, Hypercuts, and Efficuts’.

Metrics: We report the main metrics of interest: average
classification time measured as the average number of tra-
versed nodes. To measure the number of traversed nodes, we
count the number of nodes accessed during lookup (access
cost) and the number of swapped nodes during rearrangement
(reconfiguration cost). For all our baselines, we only count
the number of nodes accessed during lookup since they do
not perform any rearrangements. For MRF, which additionally

IRuleset is a set of rules to be maintained in a data structure which is then
accessed for the purpose of packet classification in a network device. See
Figure 2 for an example and § I-A for more details.

>The original source code of Hicuts, Hypercuts, and Efficuts does not
implement a packet lookup function, and instead estimates by the worst case:
the maximum depth of the tree.

incurs the list reconfiguration cost due to self-adjustments, we
add the nodes traversed during lookup and rearrangement: the
cost of a packet match is comparable to the cost of operations
that accompany the swap (checking a rule overlap).

B. Results

Before presenting our results, we analyze the characteristics
of the rulesets used in our evaluations. Specifically, we are
interested in the diversity of the dependency graph’s structure
across ruleset sizes. In Figure 5, we fix acll_seed provided
by Classbench and generate rulesets of sizes in the range 64
to 8192. We observe that some parameters increase with the
ruleset size: maximum depth of nodes, average node degree,
and the average number of ancestors. All three metrics of the
dependency graph structure influence the classification time.

—»— Depth
301 —e— Average node degree
—— Average number of ancestors

20

10

64 128 256 512 1K 2K 4K 8K
Ruleset size

Fig. 5: Statistics concerning our synthetic dataset. Increase of maximum node
depth, average node degree, and the average number of ancestors in the
dependency graph increase with the ruleset size.

MRF under high traffic locality: In Figure 6a, we show
the average number of nodes traversed with a high locality
in traffic for various ruleset sizes. For small ruleset sizes in
the range 64 up to 1K, MRF outperforms in classification
time compared to all our baselines. For ruleset size of 64:
MRF performs 7.01x better than Efficuts, 3.64x better than
CutSplit, and 14.06x better than a static-list. For ruleset size
of 1K: MRF performs 1.15x better than Efficuts, 2.12x better
than CutSplit, and 37.04x better than a static-list. For larger
ruleset sizes (> 1K): MRF performs 15x worse compared to
Efficuts and 2.7x worse compared to CutSplit, yet 49x better
that a static-list.

For a small ruleset size (e.g., 64), we can see from Figure 5
that the average number of ancestors is much lower. This
allows MRF to move the frequently matched rules closer to
the head of the list, which significantly improves classification
time under high locality. For large ruleset sizes (> 1K) the
average node ancestors grow up to 30, which does not allow
moving the frequently matched rules closer to the head (a rule
cannot be moved ahead of dependencies).

MRF under low traffic locality: We evaluate the per-
formance of MRF under low locality in traffic even though
MRPF’s design is not targeted for this case. A trace with low
traffic locality in our evaluations consists of unique packets,
i.e., a packet arrives only once in a trace, and each packet
matches a rule in the ruleset uniformly at random. As a result,
the number of nodes that MRF traverses on average is nearly



half the ruleset size. In Figure 6b, we observe that the
classification time of MRF is comparable to a static list for
all ruleset sizes.
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Fig. 6: The self-adjusting list-based packet classifier MRF outperforms
decision tree-based algorithms under high locality in traffic for ruleset sizes up
to 1K and significantly improves the memory requirements (10x on average).
Note the log scale in the figures.
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Fig. 7: MRF out-performs static decision tree-based packet classifier CutSplit
for small ruleset sizes and at high traffic locality (towards the bottom right
region of the ruleset size vs. locality dimensions).

VII. RELATED WORK

Online problems with partial orders: Prior work consid-
ers various online problems with partial orders (often referred
to as dependencies or precedence constraints). Some online
problems directly concern partial orders, e.g., poset partition-
ing [8], and other classic online problems were extended with
additional constraints with respect to a partial order given in
addition. In scheduling with precedence constraints [4], a job
can only be scheduled after all its predecessors are completed.
In caching with dependencies [6], an element can be brought
into the cache only if all its dependencies are present in the
cache. (Similarly to our problem, caching with dependencies
was also motivated by network packet classification.)

Online self-adjusting lists: Self-adjusting lists are tradi-
tionally considered in the context of online algorithms and
competitive analysis [27, 30], where the problem is known
under the name of online list access [7, 12]. This problem
was studied under many models, and one of the most popular
is the paid exchange P¢ model [26], where each transposition
costs d > 1. For d = 1, the deterministic algorithm Move-
To-Front [30] can be shown to be 4-competitive, and for
larger d, deterministic COUNTER algorithms achieve constant
competitive ratios [12, Ch. 1], converging to the competitive
ratio (5 + v/17)/2 ~ 4.56 as d grows. The lower bound
of 3 for deterministic algorithms was given by Reingold et
al. [26]. Randomized algorithm achieve better competitive
ratios: Reingold et al. designed a family of RANDOM-RESET
randomized algorithms [26], which includes a VT ~ 2.64-
competitive algorithm against the oblivious adversary for d =
1, and converges to the competitive ratio (5++/17)/2 ~ 2.28
as d grows. The analysis of RANDOM-RESET algorithms
was later extended to the Markov family of algorithms [14],
but no improved competitive ratios were provided. The best
algorithm belongs to a TIMESTAMP family, with competitive
ratio approaching 2.24 as d grows [3], given by Albers and
Janke, who also designed the best known lower bound of
1.8654 against the oblivious adversary [3]. Recently, two new
models were studied: Fotakis et al. introduced online min-
sum set cover [13], a variant where a request can be matched
by more than one item from the list; Olver et al. introduced
itinerant list update [24], a variant where the pointer must not
return to the front of the list after each request.

Packet classification: A wide range of data structures
for packet classification were proposed in the literature: lists,
tries, hash tables, bit vectors or decision trees [16, 32, 11],
as well as hardware solutions (TCAM). Packet classifiers are
often accompanied by caching systems that provide some
adjustability to traffic. Due to its simplicity, a static linear
list packet classifier is commonly applied in practice, e.g., in
the default firewall suite of the Linux operating system kernel
iptables [22], the OpenFlow reference switch [25], and 5G
packet detection rules (PDR) [1].

VIII. CONCLUSIONS

We introduced a model for online partially ordered list
access, a well-motivated and natural extension of online
list access. Despite the additional constraints, our algorithms
match the competitiveness of their counterparts from classic
list access. A question about the relation of the competitiveness
of list access and partially ordered list access remains open.
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