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Abstract
As chip-to-chip silicon photonics gain traction for their band-
width and energy efficiency, collective communication has
emerged as a critical bottleneck in scale-up systems. Pro-
grammable photonic interconnects offer a promising path for-
ward: by dynamically reconfiguring the fabric, they can estab-
lish direct, high-bandwidth optical paths between communi-
cating endpoints — synchronously and guided by the structure
of collective operations (e.g., AllReduce). However, realizing
this vision —when light bends to the collective will — requires
navigating a fundamental trade-off between reconfiguration
delay and the performance gains of adaptive topologies.

In this paper,we present a simple theoretical framework for
adaptive photonic scale-up domains that makes this trade-off
explicit and clarifies when reconfiguration is worthwhile.
Along the way, we highlight a connection — not surprising
but still powerful — between the Birkhoff–von Neumann
(BvN) decomposition, maximum concurrent flow (a classic
measure of network throughput), and the well-known 𝛼–𝛽
cost model for collectives. Finally, we outline a research
agenda in algorithm design and systems integration that can
build on this foundation.

1 Introduction
The massive scale of modern distributed comput-
ing [5, 10, 15, 26, 29, 35, 42]—spanninghyperscaledatacenters
to tightly-coupledHPCclusters—hasmadeefficientcollective
communication a critical bottleneck [18, 21, 40]. Scale-up1
networks typically connect multiple GPUs using high-
bandwidth electrical links, often through electrical switches
(e.g., NVSwitches) or PCIe memory interconnects [27]. While
these designs have servedwell for decades, they now face fun-
damental limits: the bandwidth demands of modern AI work-
loads and the sheer scale of distributed systems are pushing
electrical interconnects beyond what they can practically de-
liver [12]. As the number ofGPUs grows, these links become a
bottleneck, creating a bandwidth wall alongside rising power
consumption and heat dissipation [38]. The slowdown of
Moore’s Law forCMOSonly compounds this challenge [3, 24].
As scale-up systems grow larger and more heterogeneous,

1“Scale-up” refers to networks within a single server or a single memory
domain.

the need for fundamentally more efficient, scalable, and
low-power communication fabrics has never been greater.
In this context, silicon photonics offers a promising path

forward, delivering orders-of-magnitude improvements
in bandwidth density and energy efficiency compared to
electrical interconnects [20, 39]. By using optical signals for
chip-to-chip communication, silicon photonics can dramat-
ically boost data throughput while reducing power draw. Yet
despite its promise, much of this potential remains untapped
in scale-up systems—primarily because current designs are
rigid, lacking the adaptability needed to match dynamic
workload patterns such as collective communication.

Photonic interconnects have traditionally been built as
static circuit-switched topologies, tuned for specific, often
predictable, communication patterns. But this rigidity is
starting to crack: programmable silicon photonic fabrics are
emerging [8], enabling dynamic reconfiguration of optical
paths to adapt to shifting workload demands. These fabrics
can establish direct, high-bandwidth optical links between
endpoints, unlocking more efficient data exchange and
synchronization across GPUs within a scale-up domain.
Recent work has shown how to schedule circuit-switch
configurations that align with communication patterns,
using Birkhoff–von Neumann (BvN) decompositions or by
solving optimization problems on the aggregate demand
matrix [9, 19, 22, 28, 41]. Yet despite this progress, we know
surprisingly little about how reconfiguration delays shape col-
lective performance— orwhen it is worth reconfiguring at all.

In this paper,wemake two simple yet striking observations.
First, many collective communication algorithms naturally
induce BvN decompositions: each algorithm step can be seen
as a matching, and together these matchings form a convex
combination of the aggregate demand. This connection has
hovered in the literature for years, thanks to the inherently
point-to-point, step-wise design of collective algorithms [7].
Second, this perspective bridges neatly to performance
modeling: the classic 𝛼–𝛽 cost model for collectives emerges
naturally when each step is viewed through the lens of max-
imum concurrent flow, capturing both network throughput
and congestion. Together, these insights ground the familiar
𝛼–𝛽model inphysical topologies, generalizing collective com-
pletion time to account for real-world network constraints.
Leveraging these insights, we present a theoretical

framework for optimizing circuit switching in adaptive
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photonic interconnects. Our focus is the fundamental
trade-off between reconfiguration delay and the performance
gains enabled by dynamically matching the topology to the
communication pattern. We formulate an optimization prob-
lem that captures this trade-off, allowing us to systematically
decide when to reconfigure the interconnect and when to
maintain a static topology, with the objective of minimizing
collective completion time. This framework provides a
principled way to design circuit-switching schedules that
balance the benefits of reconfiguration against its costs, while
explicitly accounting for both network throughput and the
structure of collective communication.

Our preliminary results show that adaptive circuit switch-
ing can unlock substantial performance gains for collective
communication—but onlywhen usedwisely. In regimeswith
high reconfiguration delays or small messages, naive per-step
reconfiguration can add more latency than it saves; here, our
framework shows when it is better to stay static. Conversely,
whendelays are lowandmessage sizes are large, carefully cho-
sen reconfigurations can fully tap the available photonic band-
width, outperforming static designs by a wide margin. Most
importantly, we uncover a practical middle ground where
neither always reconfiguring nor always staying static is suffi-
cient: this regime clearly requires optimized schedules that de-
cidewhen reconfiguration isworth the cost andwhen it is not.

These results expose rich new questions at the intersection
of theory and practice: how to design fast heuristics, develop
collective algorithms that are reconfiguration-aware, and
build photonic fabrics that can adapt on the fly. We outline
a research agenda addressing these challenges at the end of
this paper. We believe this line of work pushes us closer to
interconnects where light truly bends to the collective will.

2 Background &Motivation
Collective operations, such as AllReduce and Broadcast,
are foundational in distributed computing [7, 37]. These
operations progress in structured stages with predictable
communication patterns and data dependencies. Yet static
interconnects — even when combined with topology-aware
algorithms — often fail to fully leverage this structure.
Limits of topology-aware collectives: Prior work has
developed collective algorithms tailored for specific static
topologies (e.g., torus, DGX), guided by the classic 𝛼–𝛽 cost
model [6, 23, 33]. While these designs improve efficiency
for fixed topologies, they fundamentally inherit the rigidity
of static networks. For example, multi-step collectives
like halving/doubling for AllReduce [30] require repeated
pairwise exchanges, but a fixed topology forces some pairs
to traverse longer or congested paths, increasing both
latency and bandwidth requirements [32]. Worse, static
networks must provision for worst-case demand, leading
to underutilization when traffic is sparse or staged. This is

often tackled by pipelining and mirroring the collectives for
multi-ported networks [32], but this approach only partially
mitigates the inefficiencies of static designs.
Throughput modeling and BvN decompositions:
The maximum concurrent flow [34] framework has long
been used to analyze network throughput and conges-
tion [1, 2, 16, 25, 36]. It connects naturally to Birkhoff–von
Neumann (BvN) decompositions, which express an aggregate
traffic matrix as a convex combination of matchings [25].
Many works use an aggregate traffic matrix as an input to
synthesize circuit-switching schedules for demand-aware
networks [19, 28, 41]. Yet, traffic matrices, and BvN decom-
positions assume all traffic is available simultaneously —
which is not true for collectives that generate and exchange
data in a strict sequence. This mismatch means static traffic
matrix decompositions alone cannot capture the temporal
dependencies that real collectives impose.
Programmable but costly reconfiguration: Reconfig-
urable photonic fabrics hold the promise of tailoring the
network topology to each step of a collective communication
pattern, reducing congestion and boosting throughput [8, 20].
But this flexibility comesat aprice: practical designs introduce
non-trivial reconfiguration delays, which can easily wipe out
any performance gains if applied without care [8]. Yet much
of the existing work sidesteps this trade-off altogether, either
assuming that reconfiguration overheads are negligible or
simply falling back to static networks when they are not.
Together, these gaps motivate a more principled perspec-

tive — one that bridges the staged structure of collective algo-
rithms, the limits of network throughput, and the real costs of
reconfiguration. In the next section, we present a framework
that connects BvN decompositions, maximum concurrent
flow, and the 𝛼–𝛽 model, providing fresh insight into when
and how adaptive photonic interconnects can truly pay off.

3 Theory for Adaptive Scaleup Domains
We present a theoretical framework for optimizing circuit
switching in adaptive photonic interconnects, focusing on
the trade-off between reconfiguration delay and performance
gains of adaptive topologies.
3.1 Architecture and Assumptions

We consider a scale-up domain with 𝑛 GPUS, each equipped
with an electrical-to-optical tranceiver (e.g., TeraPhy [39])
with bandwidth𝑏. All the𝑛 tranceivers are connected to a pho-
tonic interconnect with 𝑛 ports. Light enters through these
ports and can be routed through the interconnect that estab-
lishes direct optical paths between pairs of ports — essentially
connecting two GPUs. The interconnect is programmable i.e.,
reconfigurable, allowing it to dynamically reconfigure the
optical paths on-demand [20]. Alternatively, if the tranceivers
are capable of tuning the wavelength of the light they emit,
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a passive wavelength switching photonic interconnect
can establish direct paths between pairs of ports, without
requiring a cental controller. In either designs, we consider a
reconfigurationdelayof𝛼𝑟 for the interconnect to reconfigure
the optical paths. We note that several technologies today
incur a reconfiguration delay that is dependent on the number
of ports involved in the reconfiguration [8]. For simplicity, we
assume the reconfiguration delay 𝛼𝑟 is constant for all recon-
figurations (e.g., for the total port count), but our framework
can be extended to account for this variability. Importantly,
we assume that all GPUs are within a single scale-up domain,
and thus have fast access to a sharedmemory (e.g., DGXH100
server [14]). This allows the GPUs to rapidly synchronize e.g.,
using a barrier, before a particular step during a collective,
so that they can perform the reconfiguration (if required)
synchronously and proceed to the next step. We currently
focus on collective communication across all 𝑛 GPUs. A
subset of GPUs can also be considered, and the interconnect
simply reconfigures (if required) only the involved ports.
3.2 BvN, Concurrent Flow, and the 𝛼–𝛽 CostModel

We model collective communication performed by an
algorithm across 𝑛 GPUs as a sequence of 𝑠 communication
steps. In each step 𝑖 , a fixed amount of data𝑚𝑖 is exchanged
between pairs of GPUs according to a matching, represented
by apermutationmatrixM𝑖 . Each entryM𝑖 ( 𝑗,𝑘)=1 indicates
that GPU 𝑗 sends data to GPU 𝑘 during step 𝑖; all other
entries are zero. The full collective communication algorithm
can thus be described as a sequence ⟨M1,M2, ... ,M𝑠⟩ of
permutations, with associated data volumes ⟨𝑚1,𝑚2,...,𝑚𝑠⟩.

The total communicationacross all steps canbe capturedby
theaggregate demandmatrixM,where eachentryM( 𝑗,𝑘) de-
notes the total volume of data sent from GPU 𝑗 to GPU 𝑘 over
the entire operation. This matrix is simply the sum of all step-
wise permutation matrices, weighted by their data volumes:

M=𝑚1 ·M1+𝑚2 ·M2+ ...+𝑚𝑠 ·M𝑠 . (1)

This expression is, by definition, a Birkhoff–von Neumann
(BvN) decomposition ofM: a convex combination of permuta-
tionmatrices. In this view, the steps of the collective algorithm
naturally correspond tomatchings in the decomposition,with
each𝑚𝑖 denoting the volume of data transferred during step 𝑖 .

Observation 1 (Collectives Induce BvNDecompositions).
Collective communication algorithms that proceed via a se-
quence of matchings naturally induce a BvN decomposition
of their aggregate demand matrix.

The reverse, however, does not hold: not all BvN decom-
positions correspond to valid collective algorithms. More
critically, BvN decompositions fail to capture the temporal
structure inherent in collective communication. In real algo-
rithms, the ordering of permutations matters—steps cannot

be arbitrarily rearranged. The data exchanged in step 𝑖 is often
generated as a result of the computation or communication
in step 𝑖−1, creating a strict sequence of dependencies.
These temporal and data-flow constraints underscore an

important limitation: the aggregate demandmatrix,while use-
ful in demand-aware network design [11, 22, 28], assumes all
traffic is simultaneously available between source-destination
pairs. This assumption breaks down in collectives, where data
availability is staged and communication steps must follow a
strict temporal order. As a result, designing interconnects for
collective communication requires reasoning beyond static
demand matrices and BvN decompositions alone.
Yet, the BvN decompositions induced by collective

algorithms, as we show next, reveal a useful connection to
both network throughput and the classic 𝛼–𝛽 cost model.
Consider a graph𝐺 = (𝑉 ,𝐸), where𝑉 is the set of 𝑛 GPUs

and 𝐸 represents the photonic links between them. The total
completion time of the collective communication algorithm
can be expressed as:

𝑡𝑐 =𝐷𝐶𝑇 (𝑚1 ·M1)+𝐷𝐶𝑇 (𝑚2 ·M2)+ ...+𝐷𝐶𝑇 (𝑚𝑠 ·M𝑠 ), (2)

where𝐷𝐶𝑇 (𝑚𝑖 ·M𝑖 ) denotes the demand completion time of
step 𝑖 , corresponding to a data volume𝑚𝑖 and communication
patternM𝑖 .
The value of 𝐷𝐶𝑇 (𝑚𝑖 · M𝑖 ) depends on the structure

and capacity of the underlying graph 𝐺 . Specifically, we
define themaximum concurrent flow 𝜃 (𝐺,M𝑖 ) as the largest
fraction of the permutation demand matrixM𝑖 that can be
routed simultaneously without exceeding any link capacities.
Intuitively, 𝜃 (𝐺,M𝑖 ) quantifies the achievable throughput
for that step’s communication pattern. This implies that the
demand completion time can be written as:

𝐷𝐶𝑇 (𝑚𝑖 ·M𝑖 )=
𝑚𝑖

𝑏
· 1
𝜃 (𝐺,M𝑖 )

,

where 𝑏 is the link bandwidth. Here, 𝑚𝑖

𝑏
represents the ideal

transmission time assuming full throughput, while the
factor 1

𝜃 (𝐺,M𝑖 ) accounts for congestion. By definition of the
maximum concurrent flow, the effective bandwidth available
for this permutation is𝑏 ·𝜃 (𝐺,M𝑖 ), so the actual transmission
time scales inversely with the achievable throughput.
In addition, each communication step 𝑖 incurs a fixed

overhead 𝛼 , which captures startup latencies such as data
preparation; latency𝛿 ·ℓ𝑖 incurred due to per-link propagation
delay 𝛿 and the path length ℓ𝑖 of the most congested link
in the corresponding step, which is often neglected and
absorbed into the constant 𝛼 . If the network offers bandwidth
𝑏 per node, we define 𝛽 = 1

𝑏
. The demand completion time
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for step 𝑖 can then be written as:

𝐷𝐶𝑇 (𝑚𝑖 ·M𝑖 )= 𝛼+𝛿 ·ℓ𝑖︸ ︷︷ ︸
latency factor

+

bandwidth factor︷︸︸︷
𝛽 ·𝑚𝑖 ·

1
𝜃 (𝐺,M𝑖 )︸     ︷︷     ︸

congestion factor
(3)

The total completion time of the collective for all the 𝑠 steps
can now be expressed as:

𝑡𝑐 =

𝑠∑︁
𝑖=1

𝐷𝐶𝑇 (𝑚𝑖 ·M𝑖 )=
𝑠∑︁
𝑖=1

(
𝛼+𝛿 ·ℓ𝑖+𝛽 ·𝑚𝑖 ·

1
𝜃 (𝐺,M𝑖 )

)
=𝑠 ·𝛼+

𝑠∑︁
𝑖=1

𝛿 ·ℓ𝑖+𝛽 ·
𝑠∑︁
𝑖=1

𝑚𝑖 ·
1

𝜃 (𝐺,M𝑖 )
(4)

Observation2 (CollectiveCompletionTime as𝛼–𝛽 Cost).
The classic 𝛼–𝛽 cost model for collective communication
emerges naturally when we express collective completion
time in terms of latency factor 𝛼 , bandwidth factor 𝛽 , and
importantly, propagation delay 𝛿 and congestion factor
which is the inverse of concurrent flow 𝜃 . This formulation
grounds the cost model in network throughput and reveals
its dependence on both the underlying topology and the
structure of the collective.

While the 𝛼–𝛽 model is widely used in practice, network
throughput, propagation delays, and congestion are rarely
made explicit in its formulation. A few exceptions relate
congestion to communication distance or the number of the
messages on a link in structured topologies [7, 31, 32], but
these are often limited to specific patterns or architectures
assuming unsplittable flow. On the algorithm synthesis side,
Liu et al. [23] recently extended the collective cost model
using a multi-commodity flow formulation to capture capac-
ity constraints and routing flexibility for the demand matrix
represented by the overall collective operation. Although
prior work has implicitly explored aspects of this connection,
our formulation explicitly links the 𝛼–𝛽 model to network
throughput via concurrent flow. This yields a more compre-
hensive understanding of performance that accounts for both
communication structure and network topology. Notably, our
formulation applies to arbitrary topologies, making it broadly
applicable beyond structured or hierarchical networks.
3.3 Optimization Framework for Circuit Switching

The key insight from our observations is that the completion
time of a collective communication algorithm is fundamen-
tally tied to thepath lengths, congestionand throughputof the
underlying topology in each step. This is especially relevant
for circuit switching in photonic interconnects: congestion
and path lengths can be reduced to 1 — i.e., full throughput

— by establishing direct, high-bandwidth optical paths that
exactly match the communication patternM𝑖 for each step 𝑖 .
However, realizing these direct paths requires reconfig-

uring the interconnect, which incurs a reconfiguration delay
𝛼𝑟 . This creates a clear trade-off: reconfiguring reduces
congestion and improves throughput but adds latency, while
maintaining a static topology avoids reconfiguration costs
but may suffer higher congestion.

This tensionopensupanopportunity foroptimization:how
should we schedule interconnect reconfigurations to mini-
mize the total completion time for anygiven collective? For ex-
ample, onemight choose tomaintain a static topology to avoid
reconfiguration overhead but pay persistent congestion costs,
or reconfigure before every step to eliminate congestionwhile
incurring themaximum reconfiguration penalty. An effective
circuit switching schedule must strike a balance, reconfigur-
ingonly in stepswhen the throughputgainoutweighs the cost.
Given any collective communication algorithm with 𝑠

steps, each with a communication pattern M𝑖 and data
volume 𝑚𝑖 , we can formulate the following optimization
problem.We define two binary variables 𝑥𝑖 and 𝑧𝑖 as follows:

𝑥𝑖 =

{
1 base topology𝐺
0 matched topologyM𝑖 𝑓 𝑜𝑟 𝑠𝑡𝑒𝑝 𝑖

(5)

𝑧𝑖 =

{
1 if step 𝑖−1 and 𝑖 are both base topologies𝐺
0 otherwise

(6)

Here, 𝑥𝑖 defines the circuit switching schedule, i.e., whether
each step uses the base topology𝐺 or a topology that perfectly
matches the communication pattern M𝑖 for step 𝑖 of the
collective. The variable 𝑧𝑖 defines whether the interconnect
incurs any reconfiguration delay between step 𝑖−1 and 𝑖 .

The optimization problem can now be formulated as:

min 𝛿 ·
𝑠∑︁
𝑖=1

©­­­­­«
propagation delay

w/o reconf.︷︸︸︷
𝑥𝑖 ·ℓ𝑖 +

direct
with reconf.︷    ︸︸    ︷
(1−𝑥𝑖 ) ·1

ª®®®®®¬
+

𝑠∑︁
1

reconf. delay︷      ︸︸      ︷
(1−𝑧𝑖 ) ·𝛼𝑟

+𝑠 ·𝛼+ 𝛽 ·
𝑠∑︁
𝑖=1

𝑚𝑖 · (𝑥𝑖 ·
1

𝜃 (𝐺,M𝑖 )︸         ︷︷         ︸
congestion
w/o reconf.

+ (1−𝑥𝑖 ) ·1︸    ︷︷    ︸
no congestion
with reconf.

)

subject to 𝑧𝑖 ≥𝑥𝑖+𝑥𝑖−1−1
𝑧𝑖 ≤𝑥𝑖 ; 𝑧𝑖 ≤𝑥𝑖−1 ∀𝑖 ∈ [1,𝑠], 𝑥0=1

Variables 𝑥𝑖 ∈ {0,1}; 𝑧𝑖 ∈ {0,1} (7)
Our objective is to minimize the total completion time of

the collective communication algorithm, which consists of
four components: (𝛿 · ℓ𝑖 ) the propagation delay as function
of path lengths, (𝛼) the fixed latency factor, (𝛼𝑟 ) the total
reconfiguration delay incurred by the interconnect, and
( 1
𝜃
) the congestion factor across all steps. The congestion
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(a) Recursive doubling𝛼 =100 𝑛𝑠 (b) Recursive doubling𝛼 =10 𝜇𝑠 (c) Swing𝛼 =100 𝑛𝑠 (d) All-to-All𝛼 =100 𝑛𝑠

(e) Recursive doubling𝛼 =100 𝑛𝑠 (f) Recursive doubling𝛼 =10 𝜇𝑠 (g) Swing𝛼 =100 𝑛𝑠 (h) All-to-All𝛼 =100 𝑛𝑠
Figure 1: Heatmaps showing the speedup in collective completion times achieved by our optimized schedules,
compared to BvN-based schedules (top row) and a static ring topology (bottom row).

and propagation delay depend on whether we choose to
reconfigure the interconnect to match the communication
patternM𝑖 or maintain the base topology𝐺 . The constraints
ensure that 𝑧𝑖 correctly captures whether a reconfiguration
occurs between steps, and all variables are binary.
Overall, this formulation is a mixed integer program (0–1

ILP), which is NP-hard in the general case [17]. Interestingly,
our model has a special sequential structure: the variables
𝑥𝑖 (interconnect state) and 𝑧𝑖 (reconfiguration event) depend
only on the previous step. This structure admits an efficient
dynamic programming solution and is polynomial-time
solvable due to the principle of optimality [4].
This framework captures the fundamental trade-off

between reconfiguration delay and congestion in adaptive
photonic interconnects. It provides a systematic way
to optimize circuit switching schedules for collective
communication, balancing the benefits of reconfiguration
against its costs. Notably, the optimization is aware of both
the data volume in each step and the underlying network
throughput. Furthermore, the formulation supports any base
topology 𝐺 and applies to any collective communication
algorithm (including custom ones) that can be expressed as a
sequence of matchings, or even a sequence of such collective
communication operations e.g., All-to-All after an AllReduce
operation. Our formulation can even be extended to account
for a fixed pool of base topologies instead of a single base
topology𝐺 that we current use e.g., using multiple co-prime
rings as base topologies or a union of such rings for higher
degree networks [41]. Optimizing the base topologies opens
further opportunities for performance gains.

3.4 SoWhat is the ΔAfter All? Reconfigure or Not?

Our focus so far has been on the underlying theoretical prob-
lem of optimizing circuit switching for collective communica-
tion. But the central question remains:what performance gain
can we actually expect from programmable silicon photonic in-
terconnects? In otherwords, forwhat range of reconfiguration
delays does a programmable interconnect yield meaningful
speedup for collective operations in scale-up domains?
To explore this question, we conduct preliminary eval-

uations using a flow-level simulator that implements the
optimization framework described in § 3.3. We model a
scale-up system with 𝑛 = 64 GPUs, each equipped with a
single link to a reconfigurable photonic interconnect as
introduced in §3.1. We set the link bandwidth to 800Gbps,
propagation delay 𝛿 to 100ns [32], and vary the fixed per-step
latency 𝛼 , the reconfiguration delay 𝛼𝑟 , and the message size.
We run the AllReduce collective using recursive doubling and
Swing algorithms [30, 32] (which are bandwidth-optimal);
andAll-to-All (transpose) collective. Due to space constraints,
we omit the combinations of𝛼 ,𝛼𝑟 , and bandwidth, but similar
trends hold throughout the full parameter space. Since each
GPU has a single fat link, we use a ring as the base topology
𝐺 — a common choice for scale-up photonic interconnects.
While our optimization framework is especially valuable
for degree > 2 networks, we use this simple case to clearly
illustrate themain trade-offs.We compare two approaches: (1)
a static ring topology, and (2) a reconfigurable interconnect
that follows BvN schedules matched to the communication
pattern (see §3.2). We report speedup in terms of the
completion time of the collective achieved by our optimized
schedules (OPT) compared to these alternatives.
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Figure 1 summarizes the results. Figures 1a—1d show the
speedup relative to BvN schedules, while Figures 1e—1h show
the speedup relative to the static ring. Each column (x-axis) in
the heatmaps corresponds to a different value of reconfigura-
tion delay 𝛼𝑟 , and each row (y-axis) corresponds to a different
message size. The color indicates the speedup achieved by our
optimized schedule, with darker shades representing higher
speedup and no color (or white) indicates speed up of 1.

Figure 2: Our optimized
schedules can significantly
speed up collective commu-
nication even compared to
the best of both worlds —
BvN schedules and a static
ring topology.

Overall, we see that
our framework captures
two distinct regimes:
significant performance
gains (up to orders of
magnitude) over BvN
schedules appear when
reconfiguration delay
is high or message sizes
are small, where naive
per-step reconfigura-
tion would otherwise
incur excessive latency.
In comparison to a
static ring topology,
we observe substantial
speedup when reconfig-
uration delay is low and message sizes are large, where our
optimized schedule fully exploits the available bandwidth.
Interestingly, Figure 2 shows that there is also a transitional
regime — visible as the diagonal region — where our
optimized schedules outperform both static and naive BvN
approaches by adaptively deciding when to reconfigure
and when not to. This illustrates precisely when adaptive
photonic interconnects should reconfigure and when they
should not.

4 Research Agenda and Future Outlook
We see many opportunities for performance optimization
froma theoretical perspective, alongwithpractical challenges
that must be addressed before adaptive photonic intercon-
nects can be fully realized in scale-up domains. We outline
a research agenda spanning algorithm design, and systems
integration.
Fast heuristics for adaptive photonic interconnects:As
scale-up domains grow, fast heuristics for optimizing circuit-
switching schedules become paramount. While our frame-
work offers insight into potential gains, practical implemen-
tations need algorithms that adapt quickly to arbitrary collec-
tives. For example, threshold-based heuristics could switch
between a static topology and a BvN-based schedule depend-
ing on when gains outweigh reconfiguration costs [13]. Bal-
ancing near-optimality with computational efficiency will be
crucial for real adoption.

Simplifying the congestion factor in the costmodel:Our
framework relies on the maximum concurrent flow 𝜃 (𝐺,M𝑖 )
to capture congestion, but computing this exactly can be ex-
pensive, particularly for large topologies. Future work could
explore approximations or simpler proxies that retain accu-
racy but reduce overhead. For example, an upper bound on
throughput per permutation pattern based on graph degree
could reduce the congestion factor to a function of maximum
node degree and the number of communicating GPUs. Such
simplifications could make scheduling practical at runtime
while preserving useful performance insights.
Deeper understanding of the propagation delays:Our
formulation in §3.2, indicates that the completion time of
a collective communication algorithm is influenced by the
path lengths and congestion. For AllReduce algorithms, this
implies that the ring algorithm is optimal even for short mes-
sages if the propagation delays are high. Naturally, recursive
doubling [30], or other algorithms like Swing [32] that finish
in fewer steps becomemore attractive for reconfigurable inter-
connects, than for static interconnects. We leave it for future
work, to design fast heuristics for AllReduce operations.
Routingchallenges:Reconfigurable interconnectsnaturally
introduce dynamic routing challenges. While a topology that
matches a collective step’spatternallows simpleone-hop rout-
ing, practical schedules may include intermediate topologies
that balance reconfiguration cost against performance. This
requires routingalgorithms thatadaptquicklywhilemaintain-
ing high throughput and low latency. Exploring lightweight,
topology-aware routing techniques for dynamic configura-
tions is an important direction.
Tackling variable reconfiguration delays:Our formula-
tion assumes a constant reconfiguration delay 𝛼𝑟 , but in prac-
tice, this may vary with the number of ports or the specific
operation. We plan to extend our framework to account for
variabledelaysbymodeling themasa functionofport countor
reconfiguration complexity. This would enablemore accurate
scheduling that adapts to the interconnect’s characteristics.
Overlapping reconfiguration with computation:Many
collectives offer potential to overlap reconfiguration with
computation, letting GPUs prepare data while the intercon-
nect reconfigures. We plan to explore how to schedule these
overlaps tominimize total completion time, bymodeling com-
putation phases as part of the optimization.

Many interesting questions remain open, including extend-
ing our model to multi-ported collectives where each step is
not a single permutationbut aunionofmultiple permutations;
identifying optimal sets of base topologies; and addressing
practical aspects such as synchronization.

We envision a future where scale-up GPU systems seam-
lessly harness the power of reconfigurable photonic fabrics to
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break through today’s bandwidth and energy walls. By bridg-
ing theory and practice — from fast scheduling heuristics to
topology-aware routing and reconfiguration-aware collec-
tives — we can unlock the full potential of adaptive photonic
interconnects. Realizing this vision will require close collabo-
ration across systems, networking, and photonics communi-
ties, but the payoff is compelling: a new class of datacenter
and HPC architectures where communication is entirely in
photonic domain, and light truly bends to the collective will.
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